A Multi-Objective Optimization of 2D Materials Modified Surface Plasmon Resonance (SPR) Based Sensors: An NSGA II Approach

نویسندگان

چکیده

Modifying the structure of surface plasmon resonance based sensors by adding 2D materials has been proven to considerably enhance sensor’s sensitivity in comparison a traditional three layer configuration. Moreover, thin semiconductor film placed on top metallic and stacked together with enhances even more sensitivity, but at cost worsening plasmonic couplic strength (minimum level reflectivity) broadening response. With each supplementary added, complexity optimizing performance increases due extended parameter space sensor. This study focused overcoming these difficulties design process employing multi-objective genetic algorithm (NSGA II) alongside transfer matrix method (TMM) and, same time, full width half maximum (FWHM), reflectivity for four sensor structure. Firstly, semiconductor’s refractive index was optimized obtain achievable narrow FWHM almost zero. Secondly, it shown that indices barium titanate (BaTiO3) silicon (Si) are closest optimal silver—graphene/WS2 MoS2 modified structures, respectively. Sensitivities up 302 deg/RIU were achieved Ag–BaTIO3–graphene/WS2 configurations an smaller than 8 deg less 0.5% resonance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Synchronous R-NSGA-II: An Extended Preference-Based Evolutionary Algorithm for Multi-Objective Optimization

Classical evolutionary multi-objective optimization algorithms aim at finding an approximation of the entire set of Pareto optimal solutions. By considering the preferences of a decision maker within evolutionary multi-objective optimization algorithms, it is possible to focus the search only on those parts of the Pareto front that satisfy his/her preferences. In this paper, an extended prefere...

متن کامل

Fabry-Pérot-based surface plasmon resonance sensors.

A new sensing approach based on the use of an optical Fabry-Pérot (FP) cavity in conjunction with surface plasmon resonance (SPR) is proposed and theoretically investigated. The impact of the SPR on the intensity and phase response of the proposed sensor structure is evaluated using a modified FP model that takes into account the SPR effect. Compared to the conventional optical-phase-detection-...

متن کامل

Antibody Conjugated Gold Nanoparticles for Detection of Small Amounts of Antigen Based on Surface Plasmon Resonance (SPR) Spectra

In this paper, a fast and sensitive localized surface plasmon resonance (LSPR) based biosensor was developed and the optimization of gold – antibody conjugates through investigation of different parameters were performed. Gold nanoparticles (AuNPs) with a size of ~20 nm were synthesized via chemical reduction of HAuCl4 with trisodium citrate as reducing and stabilizing agent. The impacts of pH ...

متن کامل

A mathematical multi-objective model for treatment network design (physical-biological-thermal) using modified NSGA II

Today, sustainable development is one of the important issues in regard to the economy of a country. This issue magnifies the necessity for increased scrutiny towards issues such as environmental considerations and product recovery in closed-loop supply chains (CLSCs). The most important motivational factors influencing research on these topics can be considered in two general groups: environme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11104353